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Abstract. Numerical simulations of the field dependence of the isothermal remanent moment (IRM) and
the thermoremanent moment (TRM) are presented, based on a Preisach formalism which decomposes the
free energy landscape into an ensemble of thermally activated, temperature dependent, double well sub-
systems, each characterized by a dissipation field Hd and a bias field Hs. The simulations show that the
TRM approaches saturation much more rapidly than the corresponding IRM and that, as a consequence,
the characteristics of the IRM are determined primarily by the distribution of dissipation fields, as defined
by the mean field H̄d(T ) and the dispersion σd(T ), while the characteristics of the TRM are determined
primarily by a mixture of the mean dissipation field H̄d(T ) and the dispersion of bias fields σs(T ). The sim-
ulations also identify a regime H̄d � σs, where the influence of H̄d(T ) on the TRM is negligible, and hence
where the TRM and the IRM provide essentially independent scans of the Preisach distribution along the
two orthogonal Hs and Hd directions, respectively. The systematics established by the model simulations
are exploited to analyze TRM and IRM data from a mixed ferromagnetic perovskite Ca0.4Sr0.6RuO3, and
to reconstruct the distribution of characteristic fields Hd and Hs, and its variation with temperature.

PACS. 75.60.Ej Magnetization curves, hysteresis, Barkhausen and related effects – 75.60.-d Domain effects,
magnetization curves, and hysteresis

1 Introduction

Magnetic systems which exhibit hysteresis are typically
characterized by a free energy G which is an extremely
complicated functional of the vector field �M(�r) which
describes the magnitude and direction of the local mag-
netization vector at all points �r in the material. The free
energy surface possesses a multitude of local minima, max-
ima, and saddle points, with local minima representing
metastable magnetization configurations �Mms(�r). Much
of the complexity derives from natural structural disor-
der, which ensures that, for a given magnetic field Ha,
there will be many different metastable states with the
same spatially-averaged magnetization.

However, if a magnetic material exhibits return-point
memory [1] (meaning that a field sweep from satura-
tion ±Ha,sat to Ha1 followed by field cycling from Ha1

to Ha2 and back to Ha1 wipes out memory of the interme-
diate field reversal to Ha2 and restores the system to the
same state it occupied following the initial sweep to Ha1)
and congruency [1] (meaning that minor hysteresis loops
bounded by the same upper and lower reversal fields HaU

and HaL are geometrically congruent provided that the
field sequence originated from saturation ±Ha,sat), then
the system free energy can be decomposed into elemen-
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Fig. 1. Double well free energy landscape of an elementary
bistable Preisach subsystem with moment µ, states ±µ, dis-
sipation field Hd, bias field Hs, and excitation barriers W+
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tary bistable components [1], each with a double well free
energy profile and two characteristic energies, a dissipa-
tion barrier Wd and a level splitting Ws, as shown in
Figure 1. These energies may be expressed in terms of
a characteristic magnetic moment µ, which represents a
typical moment reversal associated with a transition be-
tween metastable states, and two equivalent fields, a dis-
sipation field Hd and a bias field Hs [2–6]. The conceptual
simplicity of the double well structure can be exploited
to develop physically transparent and mathematically
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analytical representations of various fundamental states,
such as the field cooled (FC) state, the zero field (ZFC)
cooled state, the anhysteretic state, and the thermal equi-
librium state, and the response of the entire ensemble to
an arbitrary sequence of field and temperature excursions
can be generated by applying the elegant mathematical
algorithms originally developed by Preisach [7].

This paper presents a numerical study of the field de-
pendence of the thermoremanent moment (TRM) and the
isothermal remanent moment (IRM), and their relation-
ship to the distribution p(Hd, Hs) of equivalent dissipa-
tion and bias fields Hd and Hs which characterizes the
ensemble of double well potentials. The correlations es-
tablished by the model simulations are then exploited to
analyze TRM and IRM data from a mixed ferromagnetic
perovskite Ca0.4Sr0.6RuO3, and to reconstruct the distri-
bution p(Hd, Hs) and its variation with temperature.

2 Model simulations

The simulations describe the response of an ensemble of
double well potentials (see Fig. 1) with a spectrum of char-
acteristic fields p(Hd, Hs) in the form of a product of a
lognormal distribution of dissipation fields f(Hd) and a
Lorentzian distribution of bias fields g(Hs):

p(Hd, Hs) = f(Hd)g(Hs)

=
(
2πσ2

dH2
d

)−1/2
exp

[
− (

ln
(
Hd/H̄d

))2
/2σ2

d

]

× (σs/π)
[
H2

s + σ2
s

]−1
. (1)

Two experimental protocols are considered here: cooling
from high temperature in a magnetic field Ha followed by
removal of the field, which yields the TRM, and cooling
from high temperature in zero field, followed by the appli-
cation and removal of the field Ha, which yields the IRM.

In a magnetic field Ha, the energies of the two minima
in Figure 1 are shifted, and each double well is character-
ized by a higher energy barrier WH = µ (Hd + |Ha − Hs| )
and a lower energy barrier WL = µ (Hd − |Ha − Hs| ) [6].
(If WL is negative, there is only one accessible state.)
We assume throughout the discussion that the dissipa-
tion barriers Wd = µHd are not explicitly dependent on
the applied field Ha, so that all excitation barriers WH

and WL are linear functions of Ha. The generalization
to nonlinear excitation barriers is addressed in detail in
reference [8] in the specific case of systems with Stoner-
Wohlfarth-like characteristics. At any temperature T , the
maximum energy barrier which can be thermally acti-
vated in an experiment with time constant texp is WT =
kT ln(texp/τ0), where τ−1

0 is a microscopic attempt fre-
quency related to the curvature of the potential well [4–6].
For temperatures where WT exceeds both WH and WL,
the subsystem is in thermal equilibrium, the level occupa-
tion probabilities are determined by the Boltzmann fac-
tor exp [±µ (Ha − Hs) /kT ], and the response function is
given by

Meq = µ tanh [µ (Ha − Hs) /kT ] . (2)

When the subsystem is cooled in a field Ha from the
equilibrium (superparamagnetic) regime, the subsystem
moment is blocked at a temperature TB such that

WH = WT (3)

or
µ (Hd + |Ha − Hs|) = kTB ln (texp/τ0) . (4)

If both WH and WL are positive, the level populations
are then frozen at exp [±µ (Ha − Hs) /kTB] and, for all
temperatures T < TB, the field cooled (FC) subsystem
moment is given by

MFC = µ tanh [µ (Ha − Hs) /kTB]

= µ tanh
[
(Ha − Hs) ln (texp/τ0)

Hd + |Ha − Hs|
]

. (5)

If WL < 0, then MFC = ±µ.
Removal of the field Ha from the FC state leaves those

subsystems with 0 < Hs < Ha in an “unstable” configu-
ration, in the sense that the sign of the field cooled mo-
ment MFC is opposite to the sign of the zero field moment
(negative). If the zero field value of the lower energy bar-
rier WL = µ (Hd − Hs) for these subsystems is either
negative or less than the thermal excitation energy WT ,
the subsystem will relax to its stable zero field configura-
tion. Subsystems with WL > WT will remained trapped in
their unstable configuration, and will contribute a ther-
moremanent moment MTRM = MFC.

Similarly, when the subsystem is cooled in zero applied
field Ha = 0, blocking occurs when

WL = µ (Hd + |Hs|) = kTB ln (texp/τ0) (6)

which freezes the level populations at
exp [±µ (−Hs) /kTB], and the zero field cooled (ZFC)
moment at

MZFC = µ tanh [−µHs/kTB]

= µ tanh
[−Hs ln (texp/τ0)

Hd + |Hs|
]

. (7)

The application of a positive field Ha induces a positive
moment MZFC+ in all subsystems with 0 < Hs < Ha, for
which the lower in-field barrier WL = µ (Hd − Ha + Hs)
is either negative or less than WT , but leaves subsystems
with WL > WT trapped in their zero field cooled configu-
ration. Removal of the field restores the zero field negative-
moment configuration in equation (7) unless the lower zero
field energy barrier WL = µ (Hd − Hs) exceeds WT , in
which case the subsystem remains trapped in its field-
induced positive-moment configuration, and contributes
an isothermal remanent moment MIRM = MZFC+.

The expressions (5) and (7) for the moments of
the individual Preisach elements (Hd, Hs) are spe-
cific to the history of field and temperature excur-
sions which define the experimental FC and ZFC pro-
tocols, and are thus, in principle, distinguishable from
the Preisach configuration which would characterize
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Fig. 2. Preisach representation of the IRM (diamond shaped
area) and the TRM (which includes the IRM) obtained by
turning off an applied field Ha at temperature T . HT is the
thermal viscosity field. The Preisach IRM and TRM subsys-
tems are all in their +µ state, and those in the region labelled
SP are in thermal equilibrium and respond superparamagnet-
ically. The rectangular area labelled pirrev(Hd, Hs) represents
the boundaries of an “ideal” Preisach density for which the
TRM depends only on the distribution of bias fields g(Hs).

the isothermal anhysteretic magnetizing (AHM) pro-
cess, which is a history-independent process performed
by field cycling with incrementally decreasing amplitude
from positive saturation at a fixed temperature. On the
other hand, for level splittings such that |Ha − Hs| ≥
2Hd/ ln (texp/τ0)∼ Hd/10 (for typical experimental times
texp ∼ 102 s), then tanh(x) ∼= 1, and all but a small
fraction of the Preisach moments are effectively saturated
at ±µ(T ), so that the distinction between the model FC
and AHM configurations is quite subtle.

The FC and ZFC processes are not isothermal and,
consequently, the Preisach density is expected to evolve
continuously during cooling. Given the details of the
growth of the individual Preisach elements with tempera-
ture, equations (5) and (7) could, in principle, be modified
to reflect the specific thermal history of blocking and un-
blocking events of each element. However, in the absence
of such detailed knowledge, a priori, regarding the ther-
mal development of the free energy landscape, we adopt
equations (5) and (7) as working definitions of the FC and
ZFC moments, and we assume throughout that these mo-
ments are insensitive to the precise manner in which the
Preisach density evolves with temperature.

The thermoremanent state and the isothermal rema-
nent state of an ensemble of double well subsystems ob-
tained by removing a field Ha at temperature T are conve-
niently summarized by the Preisach diagram in Figure 2,
which shows the state of every subsystem as a function
of its field coordinates (Hd, Hs). In general, the distribu-
tion p(Hd, Hs) occupies the entire half-plane Hd > 0. The
total system moment is obtained by integrating over the

entire Preisach plane:

M(Ha, T ) =

∞∫

0

dHd

+∞∫

−∞
dHs p(Hd, Hs, T )φ(Hd, Hs, Ha, T )

(8)
where φ (Hd, Hs, Ha, T ) is the state of the subsystem with
characteristic fields (Hd, Hs). The IRM is obtained by in-
tegrating only over the diamond shaped area in Figure 2
labelled IRM, while the TRM is obtained by integrating
over the entire area labelled TRM, which includes the
IRM. Following the earlier discussion, the remanent state
of all the IRM and TRM subsystems is assumed to be
+µ(T ). Subsystems in the region labelled SP are super-
paramagnetic and hence in thermal equilibrium.

One of the primary objectives of a data analysis based
on the double well Preisach formalism is the determina-
tion of the distribution function p(Hd, Hs). In principle,
this information is encoded most directly in the field de-
pendence of the IRM and the TRM, although the contri-
butions of the individual Hd and Hs distributions tend
to be mixed together due to the presence of the diago-
nal boundaries on the IRM and the TRM in Figure 2 at
Hd = ±Hs+WT /µ and at Hd = ±Hs+Ha +WT /µ. How-
ever, if the Preisach density p(Hd, Hs) is bounded in such
a way that the minimum dissipation field Hd,min, reduced
by the effective thermal fluctuation field HT = WT /µ, ex-
ceeds the maximum bias field Hs,max (that is, Hd,min >
Hs,max + WT /µ), as illustrated by the rectangular distri-
bution labelled pirrev (Hd, Hs) in Figure 2, then the field
dependence of the TRM is determined exclusively by the
characteristics of the bias field distribution through the
dispersion σs, independent of the distribution of dissipa-
tion fields. Real distributions are not expected to exhibit
abrupt cutoffs, so numerical simulations of the TRM and
the IRM were performed with the smooth distributions in
equation (1) in order to study the effects of the three pa-
rameters H̄d, σd, and σs individually. These simulations
are summarized in Figures 3 through 8.

Figures 3 through 6 illustrate the influence of the dis-
tribution of dissipation fields f(Hd) on the field depen-
dence of the TRM and the IRM, for a fixed distribution
of bias fields with σs = 0.1. All curves have been nor-
malized to the corresponding saturation remanence. Fig-
ures 3 and 4 show the effect of varying the median coer-
cive field H̄d when thermal fluctuations are entirely absent
(WT = 0), and when the variations in H̄d are driven en-
tirely by thermal fluctuations through the magnetic vis-
cosity field HT = WT /µ, respectively. In both cases, a
decrease in H̄d displaces the IRM towards lower applied
fields Ha and induces the TRM to saturate more rapidly.
Figures 5 and 6 show the effect of variations in the dis-
persion of dissipation fields σd in the absence of thermal
fluctuations (WT = 0), when H̄d � σs and when H̄d ∼ σs,
respectively. Variations in σd clearly have a significant im-
pact on the curvature of the IRM, but a comparatively mi-
nor influence on the curvature of the TRM, although the
latter becomes progressively more noticeable as H̄d → σs,
with increases in σd delaying the approach to saturation.
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Fig. 3. Preisach simulations of the field dependence of the
TRM and the IRM which illustrate the dependence on the
mean dissipation field H̄d, for fixed dispersions σd = 0.2 and
σs = 0.1.
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Fig. 4. Preisach simulations of the field dependence of the
TRM and IRM which illustrate the dependence on the thermal
viscosity field HT for a fixed Preisach distribution with H̄d =
2.0, σd = 0.2, σs = 0.1.

From Figures 3 through 6, it is apparent that, when
H̄d � σs, the TRM is essentially independent of the char-
acteristics of the distribution of dissipation fields f(Hd).
In this limit, the field dependence of the TRM yields an
essentially undistorted image of the distribution of bias
fields g(Hs) or, more precisely, its integral:

MTRM (Ha) ∼
Ha∫

0

g (Hs) dHs. (9)

As the distribution g(Hs) becomes narrower, equation (9)
predicts that the TRM will approach saturation progres-
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Fig. 5. Preisach simulations of the field dependence of the
TRM and IRM which illustrate the dependence on the disper-
sion of dissipation fields σd for fixed H̄d = 3.0 and σs = 0.1.
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Fig. 6. Preisach simulations of the field dependence of the
TRM and IRM which illustrate the dependence on the disper-
sion of dissipation fields σd for fixed H̄d = 0.5 and σs = 0.1.

sively more rapidly, and this is indeed confirmed by the
simulations in Figure 7, which show the dependence of the
TRM and the IRM on the dispersion of bias fields σs when
H̄d � σs. In this limit then, the TRM and the IRM pro-
vide essentially “independent” scans of the Preisach dis-
tribution p(Hd, Hs) along the two orthogonal Hd and Hs

directions in the Preisach plane, in the sense that once
the dispersion σs has been identified from measurements
of the TRM, the dispersion σd can be identified indepen-
dently from measurements of the IRM.

As H̄d → σs, the influence of the diagonal bound-
aries in the Preisach representation of the TRM in Fig-
ure 2 becomes progressively more evident, and the field
dependence of the TRM is determined jointly by the
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Fig. 7. Preisach simulations of the field dependence of the
TRM and IRM which illustrate the dependence on the disper-
sion of bias fields σs for fixed H̄d = 3.0 and σd = 0.1.
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Fig. 8. Preisach simulations of the field dependence of the
TRM and IRM which illustrate the dependence on the disper-
sion of bias fields σs for fixed H̄d = 0.5 and σd = 0.4.

characteristics of both g(Hs) and f(Hd). Since the param-
eter H̄d is essentially fixed experimentally by the measured
remanent coercive field Hcr, the analysis of the measured
TRM reduces to identifying the two dispersions σd and
σs. In this regard, it is important to note that, even in the
limit H̄d → σs, the TRM tends to be significantly more
sensitive to variations in σs than to variations in σd, as
can be seen by comparing Figure 8, which illustrates the
dependence of the TRM and the IRM on σs for H̄d = 0.5,
with Figure 6.
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Fig. 9. Experimental tests of the necessary and sufficient con-
ditions for double well decomposition of (a) return-point mem-
ory and (b) congruency, for Ca0.4Sr0.6RuO3 at T = 6 K.

3 An analysis of remanence isotherms
for a ferromagnetic perovskite

In this section, we present a Preisach-based analysis of
remanence data for a mixed ferromagnetic perovskite
Ca0.4Sr0.6RuO3 with a critical temperature TC = 75 K. In
order to assess the validity of the double well decomposi-
tion hypothesis for this particular material, experimental
tests of return-point memory and congruency were con-
ducted, and some of these are shown in Figures 9a and b,
respectively. Within experimental accuracy (limited pri-
marily by the nonreproducibility of the applied field due
to hysteresis in the superconducting magnet), the crite-
rion of return-point memory is consistently satisfied for all
minor loops which originate and terminate on the major
hysteresis loop. The criterion of geometrical congruency
of minor loops bounded by the same reversal fields is sat-
isfied for vertical loop displacements which span virtually
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Fig. 10. Measurements (discrete points) of the TRM and the
IRM for Ca0.4Sr0.6RuO3 for temperatures T ≤ 20 K, and
Preisach simulations (solid curves).
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Fig. 11. Measurements (discrete points) of the TRM and the
IRM for Ca0.4Sr0.6RuO3 for temperatures T ≥ 30 K, and
Preisach simulations (solid curves).

the entire height of the major hysteresis loop, although vi-
olations in the form of a loss of vertical amplitude become
progressively more apparent as the minor loops approach
the upper and lower branches of the major loop. While
the implications of these violations, which may be symp-
tomatic of mean-field effects [2,3] on a spatial scale which
is much longer than that of the individual Barkhausen
events, are difficult to quantify at this stage, the behaviour
observed in Figure 9 nevertheless lends considerable credi-
bility to the double well hypothesis as an interpretive tool
with physical substance.

Figures 10 and 11 show measurements (discrete points)
of the field dependence of the TRM and the IRM, nor-
malized to saturation, at several representative tempera-

tures T which span the ordered phase. Figure 10 contains
remanence data for T ≤ 20 K for which changes in tem-
perature induce significant changes in the measured rema-
nent coercive field Hcr and in the IRM isotherms, but no
detectable changes in the TRM, all of which are coinci-
dent within experimental accuracy. The solid curves are
Preisach simulations of the TRM and IRM generated with
the product distribution in equation (1). The fitting pro-
tocol involved iteration between the two data sets as fol-
lows. An initial fit to a given TRM was performed first by
assuming a very narrow distribution of dissipation fields
with H̄d = Hcr and σd = 0.05, and by varying only the
dispersion of bias fields σs. This value of σs was then used
to generate a fit to the corresponding IRM isotherm by
varying only the dispersion of dissipation fields σd. The
latter value of σd was then used to update the TRM fit.
For T ≤ 20 K, this procedure converged in one iteration,
as expected, confirming that the TRM in this regime is
indeed rigorously independent of the distribution of dissi-
pation fields, and represents an undistorted image of the
distribution of bias fields. (Attempts to incorporate mean
field effects [9,10] into the distribution of bias fields con-
sistently yielded a vanishingly small mean field parameter,
within experimental uncertainty.)

Figure 11 shows remanence data obtained at higher
temperatures T ≥ 30 K. In this regime, systematic
changes in the IRM with temperature are accompanied by
similar systematic changes in the TRM, specifically, a ten-
dency to approach saturation progressively more rapidly
as the system is warmed toward the critical tempera-
ture TC . According to the model simulations in Section 2,
such behaviour is symptomatic of either the penetration
of the dissipation field distribution into the region to the
left of the diagonal boundaries in Figure 2, or the collapse
of the bias field distribution, or a combination of these.
The solid curves in Figure 10 were obtained by following
the same iterative fitting protocol described above and,
as before, a single iteration was sufficient to establish the
two dispersions σs and σd. The simulations show that for
all temperatures T ≤ 50 K, the systematic changes ob-
served in the TRM with temperature originate exclusively
from the collapse of the distribution of dissipation barriers,
specifically from the temperature dependence of the mean
dissipation field H̄d(T ). However, the fits to the highest
temperature data (T = 60 K) measured here clearly sug-
gest that, close to TC , the collapse of the distribution of
dissipation fields alone is insufficient to replicate the evo-
lution of the TRM with temperature, and must be supple-
mented by the collapse of the distribution of bias fields.
The temperature dependences of the two Preisach disper-
sions are summarized in Figure 12. We point out that, al-
though the current analysis is focussed exclusively on the
properties of the irreversible component of the magnetic
response, it is possible to replicate the in-field response of
the perovskite as well by supplementing the irreversible
Preisach density in equation (1) with a reversible density
prev(Hs) = (λ/2) exp(−λ |Hs| ), which describes a popu-
lation of Preisach elements with vanishing dissipation bar-
riers, confined exclusively to the Hs-axis.
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4 Summary

Although measurements of the thermoremanent moment
and the isothermal remanent moment are a standard com-
ponent of the experimental characterization of any mag-
netic material which exhibits magnetic order, their sig-
nificance as complementary probes of the spectrum of
metastable state excitation energies is not widely appre-
ciated. This paper presents numerical simulations of the
TRM and the IRM based on the Preisach formalism,
which hypothesizes a decomposition of the micromagnetic
free energy into double well subsystems, characterized in-
dividually by a dissipation energy and a stored energy,
and collectively by a distribution of these energies. The
strength of the formalism resides in its ability to simulate
the magnetic response to an arbitrary sequence of field
and temperature excursions, and to relate the principal
structural features of the response, and their systematic
variation with field and temperature, to the two character-
istic energies which are fundamental to all Barkhausen in-
stabilities, regardless of their specific physical origin (wall
pinning, wall nucleation, moment rotation, . . . ).

The numerical simulations show that the TRM is
sensitive primarily to variations in the median dissipation
field H̄d(T ) and in the dispersion of bias fields σs(T ),
while the IRM is sensitive primarily to the characteristics
of the distribution of dissipation fields, and hence to varia-
tions in H̄d(T ) and in the dispersion σd(T ). Furthermore,
the simulations identify a regime H̄d(T ) � σs(T ) where
the TRM is essentially independent of the distribution
of dissipation barriers, and thus provides a virtually
undistorted scan along the axis of bias fields Hs in the
Preisach plane. The experimental signature of this regime

Table 1. Preisach distribution parameters for Ca0.4Sr0.6RuO3.

T (K) H̄d (Oe) σdH̄d (Oe) σs (Oe)

6 11000 ± 100 3300 ± 1100 72 ± 6

10 7500 ± 100 2630 ± 750 68 ± 8

20 3300 ± 50 1980 ± 495 76 ± 10

30 1700 ± 50 1190 ± 170 75 ± 17

40 900 ± 50 720 ± 90 72 ± 27

50 360 ± 30 360 ± 36 80 ± 18

60 250 ±20 200 ±25 50 ± 13

is a measured TRM which reaches saturation in applied
fields where the corresponding IRM isotherm is still negli-
gible. Thus, from fits to experimental IRM and TRM data,
acquired over a sufficiently wide range of temperatures,
it is possible to reconstruct the thermal evolution of the
spectrum of metastable state free energy barriers through-
out the entire hysteretic regime, and even to distinguish
the effects of intrinsic barrier growth from those related
to thermal overbarrier activation. In the specific case of
the ferromagnetic perovskite analyzed here, thermal fluc-
tuations are negligible throughout most of the ordered
phase, and the temperature dependence of the magnetic
response is almost exclusively a manifestation of explicit
barrier growth, which ultimately originates from the tem-
perature dependence of material parameters like the crys-
talline anisotropy constants.

The complementary relationship between the IRM and
the TRM with respect to the characteristic energies Wd

and Ws, and specifically the existence of a limit where
the TRM depends exclusively on the distribution of dou-
ble well level splittings Ws, may prove to be of particu-
lar value in the characterization of interaction effects in
systems of fine particles, where the level bias most likely
originates from the magnetostatic coupling between indi-
vidual particles or between strongly correlated clusters of
particles.
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